Review of Gesture Recognition Techniques

By François Rioux, Feb. 23, 2004

Presentation Outline

- Overview of the problem
- Human gesture representation
- Features selection
- Recognition techniques
 - ☐ HMM and « improved » HMMs
 - □ Other techniques

Gesture Recognition = Complex Task

- Motion modeling
- Motion analysis
- Pattern recognition
- Machine learning
- Psycholinguistic studies
- **.**...

Human Gesture Representation

- Psycholinguistics research by Stokoe:
 - ☐ Hand shape
 - Position
 - □ Orientation
 - Movement

Human Gesture Representation(cont)

- Application scenarios of gestures
 - Conversational
 - □ Controlling
 - eg: vision-based interfaces
 - Manipulation
 - eg: Interact with virtual objects
 - □ Communication
 - eg: Sign language → Highly structured

More on Communicative Gestures

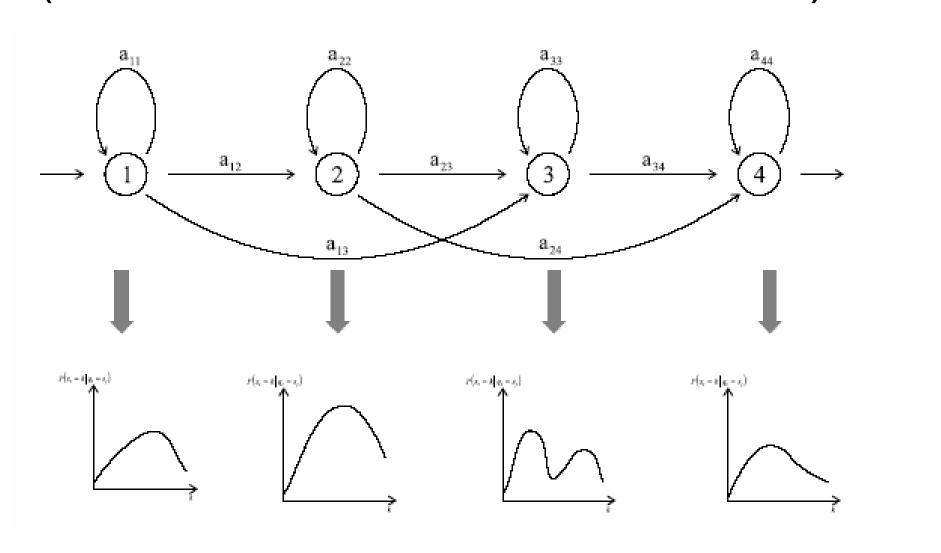
- Highly structured
- 3 phases
 - Preparation
 - □ Stroke (dynamic part)
 - □ Retraction
- The dynamic part contains the information

Features Extraction

- Good feature extraction is CRUCIAL
- Static hand posture
 - □ Fingertips
 - □ Finger direction
 - ☐ Hand contour
 - □ . . .

Features Extraction (cont)

- Dynamic of gestures
 - □ Spatial features
 - eg: 2D location of hands. More general: 3D
 - □ Temporal features
 - Need of statistical method independent of time
- Choosing only most relevant features
 - MEF: Most Expressive Features
 - Karhunen-Loeve projection
 - MDF: Most Discriminative Features



Temporal Gesture Modeling and Recognition

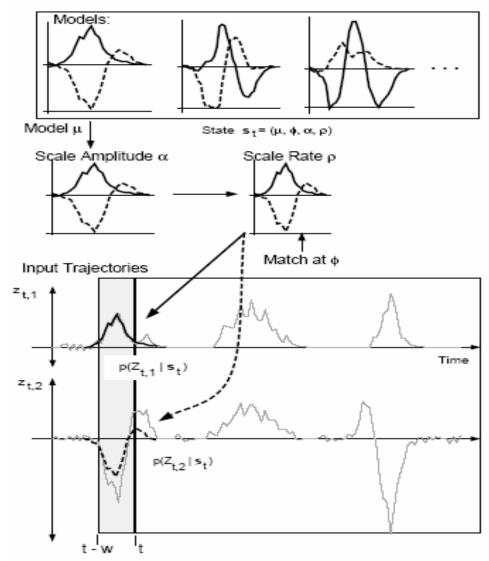
- Similar to speech recognition
 - ☐ HMMs can be used for low level recognition
 - □ However more complicated than speech...
- Gesture semantics for high level recognition

100

(Hidden Markov Model Overview)

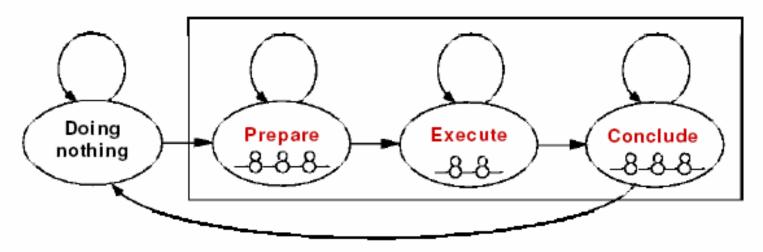
Modeling the Dynamics

- Low-level dynamics of human motion
 - Useful for human motion recognition
 - Quantitative representation of simple motion
 - Not sufficient for complex motion
- Kalman filter:
 - Estimate, interpolate and predict motion
 - Not sufficient, Gaussian assumption


Modeling the Dynamics (cont)

- Condensation Algorithm (Black & Jepson, 1998)
 - □ Combine Dynamic Time Warping (DTW) and HMM
 - Capture detailed information of the motion
 - Has a probabilistic framework
 - □ Goal: match trajectory models to input data
 - Extension to the standard condensation algorithm

Modeling the Dynamics (cont)


- Condensation Algorithm (Black & Jepson, 1998)
- Tests on whiteboard
 - □ Slower than real time
 - Manual evaluation of transition probabilities
 - Training data presegmented

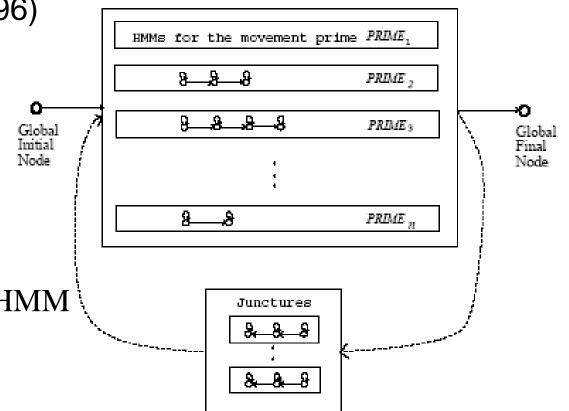
Modeling the Dynamics (cont)

- Modeling and Prediction of Human Behaviour
 - □ Pentland & Liu (1999)
 - Multiple dynamic models sequenced by Markov chain
 - Kalman filter + HMM (observations are innovations of Kalman filter)

□ Application: prediction of driver's behaviour

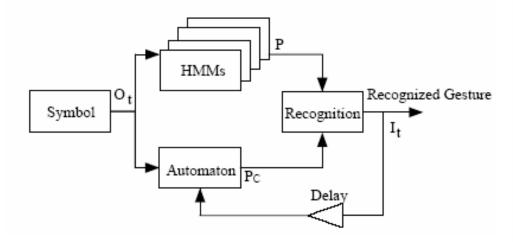
Modeling the Semantics

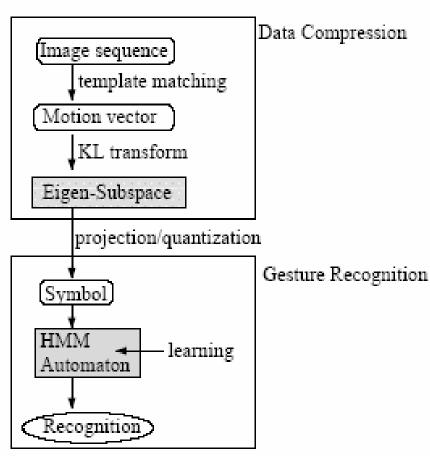
- When modeling the dynamics is not enough
 - More complex gestures
- Finite State Machine (FSM)
- Extended variable-valued logic
 - □ Rule-based induction algorithm
- PNF network {past, now, fut}
 - Constraints on states based on previous
- Bayesian network



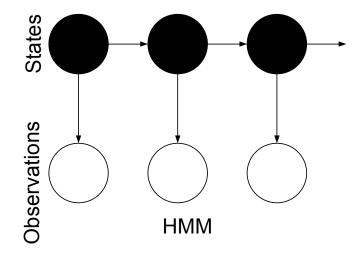
HMM Framework

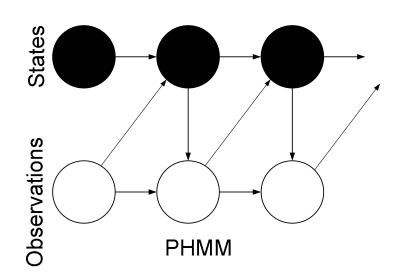
Capacity to model low level and semantics


□ Nam & Wohn (1996)

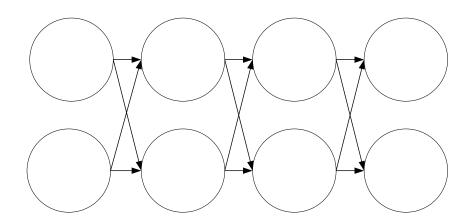

- Problems:
 - $\square P(O|\lambda)$
 - \square max P(S|O, λ)
 - \square Training => λ
- Variation:
 - ☐ Multi dimensional HMM

- Real-Time Context-based Gesture Recognition Using HMM and Automaton
 - □ Iwai, Shimizu & Yachida (1999)
 - KL-transform to compress input data
 - Context-based HMM





- HMM: only piecewise stationary processes
 - □ Gestures: all parts are transient =>
 HMM Not always suitable for gesture rec.
 - Need improvements to HMM


- Partly Hidden Markov Model
 - □ Kobayashi & Haruyama (1997)
 - □ Second order model

- Markov condition violated => HMM fails
- Coupled Hidden Markov Models (CHMM)
 - □ Brand, Oliver & Pentland (1997)
 - Coupling HMMs to model interactions between them

Other Techniques

- Multi-class multi dimensional discriminant analysis
 - □ Cui & Weng (1996)
 - □ Self-organizing framework
- Action Recognition using Probabilistic Parsing
 - □ Bobick & Ivanov (1998)
 - ☐ HMM for low level processing of features
 - Probabilistic parsing using a particular grammar and ML
- Time delay neural networks
 - ☐ Yang & Ahuja (1999)

Conclusion

- Important to model a gesture correctly
- Features extraction can be hard
- Many features => CPU intensive
- Need to keep only most relevant features
- HMMs are good, but...
- Other method???

References

Wu & Yang, Vision-based Gesture Recognition: A Review, Lecture Notes in Artificial Intelligence, 1999